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Abstract

Following ref [1], a classical upper bound forquantum entropyis identified
and illustrated,0 ≤ Sq ≤ ln(eσ2/ 2~), involving the varianceσ2 in phase
space of theclassical limit distributionof a given system. A fortiori, this
further bounds the corresponding information-theoretical generalizations
of the quantum entropy proposed by Rényi.

1 Introduction

This talk is closely based on ref [1] and provides illustrative context to it. The or-
ganizers of LT-7 are warmly congratulated for running a successful conference.

Recurrent problems in four dimensional BPS black holes focus on the en-
tropic behavior of the respective complex structure moduli spaces, and, perhaps
independently, on the corresponding holographic entanglement information lost
in decoherence, and associated Hawking radiation paradoxes. They all rely on
the fundamental and dependable statistical concept of entropy, which accounts
collectively for the flow of information in these systems, and for which robust
estimates are needed, in lieu of detailed accounts of quantum states. Ideally,
such estimates would only require gross geometrical and semiclassical features
of the system involved, and ignore quantum mechanical interference subtleties.

Classical continuous distributions have been studied in probability and infor-
mation theory for a long time, and Shannon [2] has derived handy upper bounds
for their entropy, and thus crude least information estimates, in the 1940s. Ap-
proximate counting of quantum microstates, however, is normally toilsome, and
can be approximated heuristically by semiclassical proposals [3], which, ulti-
mately, should devolve to a bona fide classical limit, despite occasional ambigu-
ities and complications along the way [4]. However, a more systematic approach
was initiated by Braunss [5], who appreciated the underlying simplicity of phase
space in taking a classical limit of intricate quantum systems. He thus tracked
the information loss involved in smearing away quantum effects, to argue that
the entropy of a quantum system is majorized by that of its “ignorant” classi-
cal limit, as~-information of the former is forfeited in the latter, an intuitively
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plausible relation. The approach to the classical limit is often in several steps,
and special care must be taken—in fact, the specific path to the classical limit
proposed in ref [5] fails the very inequality of that work, as illustrated below
for the ground state of the oscillator. Nevertheless, even though the specific
proof in ref [5] has loopholes, the generic full classical bound proposed there
is sufficiently compelling, if not evident, and borne out by all instances to our
knowledge, to be assumed, and thus be implicitly endorsed, here. It is the most
reliable guide to approaching the classical limit, were one to turn the argument
around.

In this talk, the two inequalities are simply combined into a general upper
bound of the quantum entropy of a system provided essentially by just thelog-
arithm of the variance in phase space of the classical limit distributionof that
system. The resulting inequality, eqn (9) below, is illustrated simply by the el-
ementary physics paradigm of a thermal bath of oscillator excitations of one
degree of freedom, whose phase-space representation is an obvious maximal
entropy Gaussian.

Note that there is no specific assumption of a particular spectral behavior—or
even of the existence of a hamiltonian—for the systems covered by the inequal-
ity. Extension to arbitrary degrees of freedom and tighter bounds contingent on
the circumstances of detailed physical applications are conceptually straightfor-
ward, even though specific application to the moduli phase spaces or holographic
entanglement of black holes is reserved for a future, less general, report.

In passing, and because it fits naturally with the computational technique
involved, the correspondingquantum Ŕenyi entropies[6] are also evaluated ex-
plicitly here for the same prototype system, to illustrate the broad fact that these
entropies are majorized by the Gibbs-Boltzmann entropy, and thus also by the
bound discussed here. Rényi generalized entropies were originally introduced
as a measure of complexity in optimal coding theory [6], and have been applied
to turbulence, chaos and fractal systems, as well as semi-inclusive multiparti-
cle production [7,8]; however, apparently, they have not attained significance in
black hole physics yet, nor in current noncommutative geometry efforts.

2 Shannon and Boltzmann-Gibbs entropy in phase space

For a continuous distribution functionf(x, p) in phase space, the classical
(Shannon information) entropy is

Scl = −
∫
dxdp f ln(f). (1)

For a given distribution functionf(x, p), without loss of generality centered
at the origin, normalized,

∫
dxdpf = 1, and with a given variance,σ2 = 〈x2 +

p2〉 =
∫
dxdp(x2 + p2)f , it is evident from elementary constrained variation

of this Scl[f ] w.r.t. f , [2] (also see [9]), that it is maximized by the Gaussian,
fg = exp(−(x2 + p2)/σ2)/σ2π, toScl = 1 + ln(πσ2).

That is, a Gaussian represents maximal disorder and minimal information—
in thermodynamics, least dispersal energy would be available.
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Thus, it leads to a standard result in information theory [2], Shannon’s in-
equality,

Scl ≤ ln(πeσ2) , (2)

which provides anupper bound on the lack of informationin such distributions.
Note that, in general,Scl is unbounded above, as it diverges for delocalized

distributions,σ →∞, containing no information. In contrast to the Boltzmann-
Gibbs entropy, it is also unbounded below, given ultralocalized peaked distribu-
tions (σ → 0), which reflect complete order and information.

In quantum mechanics, the sum over all states is given by the standard von
Neumann entropy [10] for a density matrixρ,

0 ≤ Sq = −Tr ρ ln ρ = −〈ln ρ〉 . (3)

This transcribes in phase space [5,11] through the Wigner transition map [12] to

0 ≤ Sq = −
∫
dxdp f ln?(hf) , (4)

where the?-product [11]

? ≡ e
i~
2 (
←
∂ x

→
∂ p−

←
∂ p

→
∂ x) , (5)

serves to define?-functions, such as the?-logarithm, above, e.g. through?-
power expansions,

ln?(hf) ≡ −
∞∑

n=1

(1− hf)n
?

n
. (6)

In a remarkable approach, Braunss [5] has argued that, forScl defined by
Sq + lnh in the limit that the Planck constant~ → 0,

0 ≤ Sq ≤ Scl − lnh . (7)

The logarithmic offset term relying on the Planck constanth accounts for the
scale [3] of the phase-space area elementdxdp in (4). This scale,h, should di-
videdxdp to yield a dimensionless phase space cell. Correspondingly, it should
then multiplyf , to preserve ‘probability’,

∫
dxdpf = 1, in the Wigner transi-

tion map from the density matrixρ to the Wigner Functionf . E.g., for a pure
state [12],

f(x, p) =
1
h

∫
dy ψ∗

(
x− 1

2
y

)
e−iyp/~ ψ

(
x+

1
2
y

)
. (8)

Now, the classical limit normally entails variations of phase-space variables on
scales much larger than~. Therefore, these variables are normallyscaled down
to scales matched to such activity. As illustrated explicitly in the next section,
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comparing quantum and classical entropies relies on the above offset to avoid
divergences. The upper bound in this Braunss inequality reflects the loss of
quantum information involved in the smearing implicit in the classical limit,
effectively regarded as an extreme limit of subadditivity [3].

Readers unfamiliar with the classical limit might find loss of the quantum
uncertainty of the theory counterintuitive and discordant with the loss of infor-
mation involved. Actually,the resolution to access the uncertainty is sacrificed
in this limit. A standard consequence of the Cauchy-Schwarz inequality for
Wigner functions is|f | ≤ 2/h, [12], reflecting the uncertainty principle: the im-
possibility of localizingf in phase space, through a delta function. The best one
can do is to take a pillbox cylinder of baseh/2 and height2/h, properly normal-
ized to1 =

∫
dxdpf . Now, scaling the phase-space variables down andf up (to

preserve this normalization—the volume of the pillbox, as in the above discus-
sion of the offset) ultimately collapses the base of the pillbox to a mere point in
phase space; and leads to a divergent height forf , a delta function, characteris-
tic of a perfectly localized classical particle. However, severaldifferent quantum
configurationswill reduce to this same limit: it isthis extra quantum information
onh-dependent features, e.g. interference, that is obliterated in the limit.

Combined with Shannon’s bound, this now amounts to

0 ≤ Sq ≤ ln
(

eσ2

2~

)
, (9)

i.e., the entropy is bounded above by an expression involving the variance of the
correspondingclassical limit distribution function: σ in this expression is not a
function of~.

It readily generalizes to multidimensional phase space (R2N , in which case
the logarithm is evidently multiplied byN , in evocation of Bekenstein’s bound),
and contexts where more information (e.g., on asymmetric variances) happens
to be available, or refinement desired.

By virtue of (6), the quantum entropy is recognized as an expansion

Sq =
∞∑

n=1

〈(1− ρ)n〉
n

=
∞∑

n=1

〈(1− hf)n
? 〉

n
. (10)

The leading term,n = 1, 1−Trρ2 = 〈1 − hf〉, is theimpurity [10–12], often
referred to as linear entropy. Like the entropy itself, it vanishes for a pure state
[10–12], for whichρ2 = ρ, or, equivalently,f ? f = f/h. Each term in the
above expansion then projects outρ, or ?hf , respectively:pure states saturate
the lower bound onSq.

A likewise additive (extensive) generalization of the quantum entropy is the
Rényi entropy [6],

Rα =
1

1− α
ln〈ρα−1〉 =

1
1− α

ln
∫
dxdp

h
(hf)α

? , (11)

where the limitα → 1 yieldsR1 = Sq, and the above-mentioned impurity is
1− exp(−R2). For continuous distributions (infinity of components) discussed
here,R0 is divergent.
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Forα ≥ 1,Rα ≥ Rα+1, soSq ≥ Rα, and it is also bounded below by 0 [6],
i.e.,

Sq ≥ Rα ≥ Rα+1 ≥ 0 , (12)

so that, a fortiori, the Ŕenyi entropy is also bounded by (9).

3 Gaussian Illustration

To illustrate the above inequalities, consider the (maximally chaotic) Gaussian
Wigner Function ofarbitrary half-varianceE,

f(x, p,E) =
e−

x2+p2

2E

2πE
= e−

x2+p2

2E −ln(2πE). (13)

This happens to be the phase-space Wigner transform of a Maxwell-Boltzmann
thermal distribution for harmonic excitations of one degree of freedom [13],
in suitably rescaled units, normalized properly to unity, and with mean energy
E = 〈(x2 + p2)/2〉.

Calculation of the entropy of this distribution, is, of course, an elementary
physics problem, but its independent phase-space derivation [14] (also see [15]),
is reviewed here, i.e., evaluation of (4) directly. Still, the reader ought to be able
to appreciate the technical argument here, without any knowledge of thermo-
dynamics, the interpretation of the formal variance as energy,E, or the above
unavoidable oscillator identification!

ForE = ~/2, the distribution reduces to justf0, the Wigner Function for a
pure state (the ground state of the harmonic oscillator). Hence [11,12],

f0 ? f0 =
f0
h
, (14)

so thatf0 is ?-orthogonal to each of the terms in the sum (6), and henceSq = 0,
indicating saturation of the maximum possible information content. Moreover,
it is directly evident that0 < Scl − lnh = ln(e/2) = 1− ln 2 ∼ 0.307.

(Caution: If one casually, and improperly, dropped the? above to substitute
hf2

0 for f0, as perhaps suggested by the limiting procedure of ref [5], the re-
spectiveE would be effecitvelyhalved, and thus force violation of the Braunss
inequality through a negative result!)

For generic widthE, the Wigner Functionf is not that of a pure state, but
it still happens to always amount to a?-exponential[16] (ea

? ≡ 1 + a + a ?
a/2! + a ? a ? a/3! + ...) as well,

hf = e−
x2+p2

2E +ln(~/E) = e
− β

2~ (x2+p2)+ln( ~
E cosh(β/~))

? , (15)

where an “inverse temperature” variableβ(E, ~) is useful to define,

tanh(β/2) ≡ ~
2E

≤ 1 =⇒ β = ln
E + ~/2
E − ~/2

. (16)
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(Thus the above pure statef0 corresponds to zero temperature,β = ∞.)
Since?-functions, by virtue of their?-expansions, obeythe same functional

relations as their non-? analogs, inverting the?-exponential through the?-
logarithm and integrating (4) yields directly the standard thermal physics result,

Sq(E, ~) =
E

~
ln

(
2E + ~
2E − ~

)
+

1
2

ln
(

(
E

~
)2 − 1

4

)
=

β

2
coth(β/2)− ln(2 sinh(β/2)). (17)

Indeed, this can be seen to be a monotonically nondecreasing function ofE,
attaining the lower bound 0 for the pure stateE → ~/2 (thus,β → ∞, zero
temperature).

The classical limit,~ → 0 (β → 0, infinite temperature) then follows,

Sq → 1 + ln(E/~) = ln(πe2E)− lnh = Scl(E)− lnh , (18)

and is explicitly seen to bound the expression (17) for allE, saturating it for
largeE >> ~, in accordance with Braunss’ bound.

That is, the upper bound (9) is saturated for Gaussian quantum Wigner func-
tions withσ2 >> ~.

Note the regionE < ~/2, corresponding to ultralocalized spikes excluded
by the uncertainty principle, was not allowed by the above derivation method,
since, in this region, no?-Gaussian can be found to represent the Gaussian.
(It would amount to complexβ andSq, linked to thermal expectations of the
oscillator parity operator.)

NB. An alternate heuristic proposal of ref [3] for the classical limit of the
entropy effectively starts from the Husimi phase-space representation [12]; it
first effectively drops all?Hs in (4) and easily evaluates (1) instead (which is
well-defined becausefH ≥ 0 automatically),beforecompleting the transition to
the classical limit~ → 0. It also, ultimately, yields the same answer (18), since
the Husimi representation of the Gaussian Wigner Function (13),

fH ≡
∫
dx′dp′

e−((x′−x)2+(p′−p)2)/~

π~
f(x′, p′) =

e−
x2+p2

2E+~

π(2E + ~)
, (19)

is also a Gaussian. Utilized to evaluate (1), it yieldsln(πe(2E + ~)), which has
the more direct expressionScl of (18) as its classical limit. Nevertheless, for
smallE, this proposal is neither equivalent, nor as satisfactory. For the ground
state,E = ~/2, which is a coherent state, this semiclassical entropy reduces to
a characteristic minimal value,1 + lnh. However, the corresponding classical
entropy then is larger,1 > 0.307, than the one found above, and less informative.

By virtue of (15),?-powers of the Gaussian are also straightforward to take,
and thus the Ŕenyi entropies can be readily computed:

Rα =
1

1− α
ln

(
(2 sinh(β/2))α

2 sinh(αβ/2))

)
(20)

=
1

α− 1
ln

((
E

~
+

1
2

)α

−
(
E

~
− 1

2

)α)
.
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Noteα → 1 checks with the above (17),R1 → Sq. Also, in the pure state
limit, E = ~/2, it is evident thatRα = 0 checks for allα ≥ 1. (Forα > 1 and
the small disallowed valuesE < ~/2,Rα < 0.)

Rα is also a nondecreasing function ofE; and, in comportance with (12),
a nonincreasing function ofα. Up to an additive,α-dependent constant, the
classical limit is identical to that for the entropy itself,

Rα →
lnα
α− 1

+ ln(E/~) , (21)

in agreement with the classical result of [8]. It may well be that, as in systems
where the relevant Compton wavelength vanishes behind its own Schwarzschild
horizon, specificαs may well provide more detailed or practical measures of
complexity in Hawking radiation with sparse information available.

If a specific quantum Hamiltonian were actually availablefor the system in
question (a rare occurrence), then the classical limit of the entropy of the system
would be straightforward—and thus the inequality discussed here would not be
that powerful, since the classical entropy itself would be at hand, in general
lower than the Shannon bound.

For such a simple system, the upper-bounding classical entropy would result
out of the phase-space partition function specified by the corresponding classical
hamiltonian (the Weyl symbol of the quantum hamiltonian). This is easily illus-
trated explicitly by hamiltonians which are positiveN -th powers of the oscillator
hamiltonian, so that, simply,

fcl ∝ exp(−((x2 + p2)/2E)N ). (22)

The bounding classical entropy then reduces by standard thermodynamic evalu-
ation to be just (1),

Scl =
1
N

+ ln
(

2πE Γ
(

1 +
1
N

))
, (23)

lower than the cooresponding Shannon bound,

1 + ln
(
πE

Γ(1 + 2/N)
Γ(1 + 1/N)

)
. (24)
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